If it's not what You are looking for type in the equation solver your own equation and let us solve it.
115=8x^2-10x
We move all terms to the left:
115-(8x^2-10x)=0
We get rid of parentheses
-8x^2+10x+115=0
a = -8; b = 10; c = +115;
Δ = b2-4ac
Δ = 102-4·(-8)·115
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{105}}{2*-8}=\frac{-10-6\sqrt{105}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{105}}{2*-8}=\frac{-10+6\sqrt{105}}{-16} $
| 3=6/z | | 17f-1=4f | | -2x-4=4x+2 | | 3(2x+2)=10 | | 2x-7=6-5x | | 10=2w-2+7+w | | 2(5x+3)=13(3x/4) | | 9-p=-2-(p-3) | | 4x^2-35x=50 | | -7p+62=p+2 | | 3x-3=4x+5= | | (8x+4)^3=0 | | 8z-12=-2z+8 | | -5(3w-1)+7w=1+2(4w-1) | | 61-1x=-8x+101 | | 6+(5x-1)/3=10 | | 10-5x=5(1-x)+5 | | 3(v+6)=-3(6v-8)+6v | | -41.2x+31.5=65.1 | | 3n=4n+12 | | -8x-9=72 | | 21z+-2=34+9z | | y=-2.5(40)+180 | | 3x+x+5=146 | | 6x+5=3x-4x= | | (4a+3)+a=28 | | 6.75+3/8x=13/14 | | -4(w+3)=w-8+2(2w+4) | | 4n=-2(2-2n)+n | | 4.5 y=12.5 4 | | 9x=2+21 | | -12.6x-4.9=154 |